
Modeling and Simulation in Process Technology with Modelica

Journal: Summer Computer Simulation Conference
Manuscript ID: SCSC-05-09-009.R1

Track: M&S Methodology & Tools
Date Submitted by the

Author: 31-May-2005

Complete List of Authors: Zupanèiè, Borut; University of Ljubljana, Faculty of Electrical
Engineering, Laboratory for Modeling, Simulation and Control
Zauner, Guenter; Vienna University of Technology, Institute for
Analysis and Scientific Computing
Breitenecker, Felix; Vienna University of Technology, Institute for
Analysis and Scientific Computing

Keywords: object oriented modeling and simulation, Modelica libraries,
standardization, process industry

Summer Simulation Multiconference - SCSC S 2005

Modeling and Simulation in Process Technology with Modelica

Borut Zupančič
University of Ljubljana

Faculty of Electrical Engineering
Tržaška 25, 1000 Ljubljana, Slovenia

borut.zupancic@fe.uni-lj.si

Günther Zauner, Felix Breitenecker
Vienna University of Technology

Institut for Analysis and Scientific Computing
Wiedner Hptstr. 8-10
1040 Wien, Austria

guenther_zauner@gmx.at

Keywords: process industry, object oriented modeling and
simulation, Modelica libraries, standardization

Abstract
Many modeling and simulation tools have a lack of object
orientation. So it is not possible to build true reusable
components. Modelica is on the other hand a nice example
of OO modeling language which can become a kind of
international standard. In Modelica, a library which enables
an efficient modeling in process technology, was
implemented. All basic components of hydraulic systems
such as the tank, pump, valve, … were included. The library
was tested on a control systems design problem. Namely a
PI controller and a cascade controller were designed with an
optimization in Matlab. The example showed that the
combination of Dymola- Modelica (for modeling) and
Matlab-Simulink environments (for simulation and
optimization) can be a very efficient tool for control system
design.

INTRODUCTION
 Standardization of languages for modeling and
simulation was always very important in the history.
However the last standard that was really accepted was
CSSL standard from 1967 [1]. Nowadays perhaps the most
promising activities are in conjunction with the so called
Modelica activities [4] (www.modelica.org). After an
initiative of the Federation of European Simulation Societies
EUROSIM and The Society for Computer Simulation SCS
in the middle of nineties a new language Modelica [3,4],
which gives a hope to become a kind of international
standard for model exchange, was defined.
 A lack of object-oriented properties, which disables
the reuse of already build models, is another disadvantage of
many modern modeling and simulation tools. Due to this
reason some special-purpose tools were developed (for
mechanical, electrical, chemical systems, …). In modeling
however combinations of systems from different areas are

frequently needed (e.g. mechanical, electrical, hydraulic as
well as control systems in mechatronics, particularly within
automotive, aerospace and robotics applications), and
Modelica [3,4] (with appropriate working environment e.g.
Dymola [1,2]) represents a tool that efficiently solves this
problem in an object-oriented manner.

BLOCK ORIENTED CONVENTIONAL
SIMULATORS VERSUS OBJECT
ORIENTED MODELLING AND
SIMULATION ENVIRONMENTS

In order to allow reuse of component models, the
equations should be stated in a neutral form without
consideration of computational order. This is so called
acausal modeling. However most of the general-purpose
simulation software on the market such as ACSL,
Simulink,… assume that a system can be decomposed into
block diagram structures with causal interactions. This
means that the models are expressed as an interconnection
of submodels on explicit state-space form (ODE – ordinary
differential equation form)

),,(tuxfx =& (1)
),,(tuxgy =

where u is an input, y is an output and x is a state. It is rare
that a natural decomposition into subsystems leads to such a
model. Often a significant effort in terms of analysis and
analytical transformations is needed to obtain a problem in
this form. It requires a lot of engineering skills and
manpower and it is error-prone.
 In Modelica it is possible to write balance
and other equations in their natural form as a system of
differential-algebraic equations, DAE

),,,,(0 tuyxxf &= (2)
where x is the vector of unknowns that appears
differentiated in the equation and y is the vector of
unknowns that do not appear differentiated. Computer

Page 1 of 6 Summer Simulation Multiconference - SCSC S 2005

http://www.modelica.org/

algebra is utilized to achieve as efficient simulation code as
possible, similar as if the model would be converted to ODE
form manually.

OBJECT ORIENTATION
 We shall not talk about general concepts in OO
programming where well known terms as encapsulation,
data abstraction, inheritance, dynamic binding, … are used.
From a modeler point of view, OO means that one can build
a model similar to real system: to take a pump, a pipe, a
valve, … and to connects them. For an efficient modeling,
modeled systems are decomposed into subsystems
(components), which are modeled as submodels and then
hierarchically connected into a complete model. Modeling
languages enable simple reuse of already build models. To
reuse a certain model in other models it should be defined as
a class. Model classes can be defined by physical laws
(energy and mass balance equations and not necessarily
with state space description (Eq. 1). This contributes to a
better understanding and reusability of models.

PHYSICALLY ORIENTED CONNECTIONS
 The appropriate complexity of the implementation
of the connections between model building blocks is
probably the most important property of OO M&S tools.
Connections between submodels are based on variables,
which define proper relations and influences between
movements, angles, currents, pressures, etc. It is similar as
when real systems are built. Fig. 1 shows how three
hydraulic subsystems are connected. Three physical
variables are presented in connections (connectors in
Modelica): qi (hydraulic flow), pi (hydraulic pressure), Ti
(temperature)

S 1 S 2

S 3

q1 , p1 , T1 q2 , p2 , T2

q 3
 ,

p 3
 ,

T 3

CONNECTORs

Figure 1. Connection of three hydraulic subsystems

 There are two types of variables, which are defined
in CONNECTORSs of subsystems: variables that become
equal in connection points, in our example temperature and
pressure (ACROSS variables e.g. potential, temperature,
pressure,…):

 p1 = p2 = p3 T1 = T2 = T3 (3)
and variables which sum equals zero (THROUGH variables,
e.g. current, momentum, force,…prefix FLOW in
Modelica):

q1 + q2 + q3 = 0 (4)
CONNECTOR is a special structure in which all the
variables are collected. Each CONNECTOR has a name,

which is composed of a submodel name and a name of a
particular connector . Connections in traditional block
diagram simulation languages can be treated as a subset of
connections introduced by conectors. Namely they possess
only variables of the type ACROSS, which become equal in
junction points.

IMPORTANT FEATURES OF OO M&S
ENVIRONMENTS
 Some important features of modern OO M&S
environments are (e.g. Dymola with Modelica):
• Modeling of various kinds of complex physical systems

with object oriented approach.
• General-purpose tools, equivalently usable for modeling

of mechanical, electrical, chemical, thermo dynamical
and other systems.

• Possibilities to reuse already built models.
• Acausal model building.
• Hierarchical structure of models.
• Description of processes through physical laws

(differential equations) irrespective to the type and
purpose of a model.

• Easy and efficient way for submodels connections
through connectors (more general then input-output
connections known in block oriented simulation tools).

• Symbolical and numerical solving of systems of
equations - algebraic formula manipulation.

CONTROL DESIGN IN PROCESS
TECHNOLOGY

Process systems are dynamical systems dealing with
physical quantities like level, flow, temperature, pressure,
ph. Appropriate control strategies in such systems are very
important. As all modern and sophisticated control methods
are model based, the appropriate M&S environment is very
important. In the past we used more or less only Matlab-
Simulink environment. This package is extremely efficient
for the design of control schemes. However due to the lack
of object orientation the modelling of the process to be
controlled is inefficient. So we started with Dymola-
Modelica environment which has all previously described
features. We also examined the combination of Dymola-
Modelica and Matlab-Simulink. Modelica was used to
model a hydraulic process. The whole process was then
used in Simulink as a Dymola block . So the complete
Matlab environment can be used for control system design (
e.g. Control toolbox, Optimization toolbox, …)

PROCESS TECHNOLOGY LIBRARY:
AN OO IMPLEMENTATION IN DYMOLA-
MODELICA ENVIRONMENT

 Dymola 5.3 includes several Modelica libraries:
electrical systems, mechanical systems, control systems,…

Page 2 of 6Summer Simulation Multiconference - SCSC S 2005

So our process technology library (PTL) also called
hydraulic library supplements the basic configuration.
 The building blocks of the PTL can be divided into
four groups:

1st
group

Components, which
define output pressure in
their equations

• Reservoir
• Pump
• Controlled pump
• Reference pressure

2nd
group

Components, that are
based on a pressure
difference define a flow

• Valve
• Controlled valve
• Flow element

3rd
group

Sources • Constant volume
flow

• Controlled volume
flow

4th
group

Interfaces between
hydraulic and control
signals

• Linear signals
transducer

• Flow measurement
Table 1. Components in the process technology library

Elements of the first and the second group must be
alternatively used when building a model. So an element of
the second group which is used behind an element of the
first group, determines the flow. The reservoir and the pump
can be directly connected, but then a flow element should be
used in order to define the flow.

Description of the PTL

The library was implemented as a new subpackage
HydraulicSystems with eleven components (see Table 1).
This package includes also a subpackage HydInterfaces – a
subpackage of all needed connectors. All components are
defined with icon layer, diagram layer and Modelica text
layer. So users can build models graphically but a textual
mode is also available in order to introduce more specific
model properties.

Connectors

Four different connectors were implemented. The first
connector - connector Hyd_Input is used to define a
hydraulic input into a component. It is defined by the
following Modelica program:

connector Hyd_Input
 "Layout of a port where liquid flows into an element"
 Modelica.SIunits.Pressure p "pressure at port";
 flow Modelica.SIunits.VolumeFlowRate q
 "flow rate through the port";
 end Hyd_Input;

The graphical appearance information is omitted in the
above listing. The pressure p is defined as an across variable
and flow q as a through (flow) variable. Both quantities also
inherit the properties defined in the package
Modelica.SIunits providing predefined types based on
international standard ISO 31-1992. The described
connector can be used to model the inflow to the pump,

valve, reservoir and some other components. The definition
of the connector Hyd_Output, which defines a hydraulic
output differs only in the graphical part, as the color is
different.
 The third connector HeightOutput enables the
“measurement” of a signal. In the described library it was
used in the reservoir for level measurement, which can be
used for control purposes. The last connector InPortControl
is used in externally controlled components (flow source,
pump, valve). Through this signal external sources (e.g.
controller) can influence the activity of appropriate
components.

PTL components

model tank

This is the model of a reservoir with
the inflow connector at the top and
three inflow/outflow connectors
(side and bottom). Besides there is also the connector for
level “measurement”. This is the program in Modelica for
the reservoir:

model tank "with input and output elements and a height output"
 parameter Real area = 1 "cross-section in m^2";
 parameter Real hr = 0.5 "height of the tank/reservoir in meter";
 parameter Real h1 = 0 "height of the first input/output-element";
 parameter Real h3 = 0 "height of the third input/output-element";
 parameter Real hc1 = 0 "height difference of the connected flow
 element in meter";
 parameter Real hc2 = 0;
 parameter Real hc3 = 0;
 parameter Real beginninglevel=0 "initial level";
 constant Real ro=1000 "density of the water at 4°C";
 constant Real g=9.81 "earth acceleration";
 Real level(start=beginninglevel);

 HydInterfaces.HeightOutput HeightOutput1;
 HydInterfaces.Hyd_Input Hyd_Input1;
 HydInterfaces.Hyd_Output IO1;
 HydInterfaces.Hyd_Output IO3;
 HydInterfaces.Hyd_Output IO2;
 equation
 der(level)=if level>hr then
 (if (Hyd_Input1.q + IO1.q + IO2.q + IO3.q)>0 then
 0 else (Hyd_Input1.q+IO1.q+IO2.q+IO3.q)/area)
 else(Hyd_Input1.q+IO1.q +IO2.q+IO3.q)/area;
 HeightOutput1.signal[1]=level;
 Hyd_Input1.p=0;
 IO1.p=if (level-h1)<0 then 0 else ro*g*(level-h1+hc1);
 IO2.p=if level<0 then 0 else ro*g*(level+hc2);
 IO3.p=if (level-h3)<0 then 0 else ro*g*(level-h3+hc3);
end tank;

The program consists of three parts: declarations of model
class, declarations of connectors and equations.

model Pump

The pump introduces the appropriate
pressure difference in a pipe. The
important parameter is the maximal height

Page 3 of 6 Summer Simulation Multiconference - SCSC S 2005

to which the pump can pump. The pump always pumps in
the direction of the arrow. It is necessary to use an element,
which defines that flow (valve, flowelement) behind the
pump. This is the program in Modelica for the pump:

model Pump "model of the normal pump"
 parameter Real hp=1 "maximal height that can be pumped";
 parameter Real hc=0 "height difference between the element
 before and behind the pump";
 parameter Real k=1 "+1 or -1, depending on

 the pumping direction, up or down";
 constant Real g=9.81 "earth acceleration";
 constant Real ro= 1000 "density of water at 4°C";
 HydInterfaces.Hyd_Input Hyd_Input1;
 HydInterfaces.Hyd_Output Hyd_Output1;
equation
 Hyd_Output1.p=if Hyd_Input1.p>0 then
 ro*g*(hp-k*hc)+Hyd_Input1.p else 0;
 Hyd_Output1.q=-Hyd_Input1.q;
end Pump;

model CPump

The only difference in comparison with
the pump is the possibility, that the
maximal height to which the pump can
pump can be settled with a scalar input signal. So it is
possible to control a flow or indirectly
a level in a tank.

model p0

As in electrical circuits when points
with zero potential must be defined,
there is also a need to define air
pressure in open hydraulic systems. This is done with the
drain element. For simplicity this pressure is set to zero as a
flow is always a result of pressure differences.

model valve

Valve defines the volume flow which
depends on the square root of the pressure
difference between connecting points. The
basic valve parameter is the cross section area. Additional
parameter is the opening (value between 0 and 1). The
program in Modelica for the valve is the following:

model Valve
 parameter Real sv=1 "degree of opening of the valve";
 parameter Real kv=0.000001 "cross-section in m^2";
 constant Real g=9.81 "earth acceleration";
 constant Real ro=1000 "density of water with 4°C";
 Real p; // local parameter - the pressure difference
 Real qv; // volume flow parameter
 HydInterfaces.Hyd_Input Hyd_Input1;
 HydInterfaces.Hyd_Output Hyd_Output1;
equation
 p=Hyd_Input1.p-Hyd_Output1.p;
 qv=kv*sv*sqrt(abs(2*p)/ro);
 -Hyd_Output1.q=if p<0 then -qv else qv;
 Hyd_Input1.q=-Hyd_Output1.q;
end Valve;

model CValve

The only difference in comparison with
the valve is the possibility, that the
opening of the valve can be settled with a
in the range between 0 and 1. So it is possible to control a
flow or a level in a tank.

 scalar input signal

model flowelement

The flowelement is a connecting pipe,
which is used to calculate the volume
flow between two connected elements
with pressure as input/output variable
(i.e. connection between two tanks, after the pump, …). The
flow depends on the pressure difference between the two
connected elements and the cross-section area of the
element.

model Source

This component is a model of the source
with constant volume flow. This flow is
independent of the pressure at the
connector. The source can be connected with a tank, a valve,
a controlled valve or a flow element.

model CSource

This element is a model of the source with
controlled outflow. The external control
variable is connected to the appropriate
connector and defines the volume flow.

model Conv

This is a model of the linear signals
transducer. Its input signal is linearly
transformed to the output signal.

model flowmeter

This is a model of the ideal flowmeter. It is
used for a pipe flow determination.

EXAMPLE: OPTIMIZATION OF A
HYDRAULIC CONTROL SYSTEM

Optimization of control in industrial process
systems is very significant. In this sense model based
methods are very important. Our example will show how
Dymola-Modelica with the developed process technology
library will be efficiently used for the modeling part and
Matlab-Simulink for the control design part.
 The process is a three tank laboratory set-up which
is shown in Fig. 2.

Page 4 of 6Summer Simulation Multiconference - SCSC S 2005

Figure 2. Laboratory three tank system

The process was modeled with the developed Modelica
PTL. The appropriate Modelica model is shown in Fig. 3.

V12 V23

Tank1 Tank2 Tank3

tank

V1

t

1
2

3h

t

1 2

3h

t

1 2

3h

V V

V V V V

t

1 2

3h

p...

Pump_signal

startTime={0}

V2 V3 Vout

Tank

Pump

Flow el.

Figure 3. Scheme of the hydraulic system in Modelica

The modeling data were the following: Tank 1, Tank 2 and
Tank 3 are the same with the cross section area 0.0154m2,
maximal level is 0.63m and initial levels are 0. The main
reservoir Tank has the cross section area 1m2, initial level is
0.2m. The valves V12, V23 and Vout are fully opened with
the valve constants 0.0001m2. The valves V1 and V3 are
shut, the valve V2 has the valve constant 0.0001m2 with the
opening 0.1 (10%). The flow element has the cross section
area 0.00002 m2. The controlled pump has the maximal
pump level 10m (control signal 0-10) and it has to pump to
the level 1.37m.

In the first open loop experiment the pump was
excited with the constant signal 4.5m. Fig. 4 shows the
appropriate level signals. The highest level is reached in the
Tank 1 and the lowest level in the Tank 3. The responses
need app. 500 s to reach steady states.

0 500 1000

0.0

0.1

0.2

0.3

tank1.level tank2.level tank3.level tank.level

Figure 4. Open loop responses

To confirm the efficiency of the combination of the Matlab-
Simulink and Dymola-Modelica environments we
developed the following control system: with controlled
pump the level in the Tank 3 must be controlled to the level
0.1m. At time t=0 the reference step change 0.1 appeared
and at time t=200s there was a disturbance: the valve V1
was opened for 20%.

A PI controller and a cascade controller with
Matlab Optimization Toolbox (function fminsearc for
multidimensional unconstrained nonlinear minimization
(Nelder-Mead)) were developed. The objective function was

dttetOf ∫=
400

0

)((5)

where e(t) is the difference between the reference (desired)
and actual level in Tank 3.

Fig. 5 shows the model, which was prepared in
Dymola-Modelica for the use in Matlab-Simulink as a
Dymola block. The connectors (input and outputs) between
Dymola-Modelica and Matlab-Simulink were defined.

V12
V23

tank1 tank2 tank3

tank

DYMOLA model used in SIMULINK

t

1
2

3h

t

1 2

3h

t

1 2

3h

V V

V V V

t

1 2

3h

p...

CV

Disturbance

startTime={200}

Figure 5. Dymola-Modelica model for Matlab-Simulink

Fig. 6 depicts the Simulink model for the cascade control
system which includes also the Dymola model block.

1

Out1

levels

To Workspace

SaturationREF. for LEVEL3

PUMP

PID

PI contoller

-K-

P contoller

LEVELS

1
s

Integrator

ERROR

Pump_signal

Lev el3_signal

Lev el1_signal

Lev el2_signal

DymolaBlock

Dot Product

Clock

0

CRITERION FUNCTION

|u|

Abs

Figure 6. Simulink model which includes Dymola block

Page 5 of 6 Summer Simulation Multiconference - SCSC S 2005

The first closed loop study was however made with a single
loop PI controller, which was optimized for the reference
step change in the interval 0-200s. The optimization
calculated the following parameters for the proportional and
integral gains: Kp= 105.6 and Ki=1.06. Fig. 7 presents all
three levels as results to the reference change and the
disturbance.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
PI control of the hydraulic system

Time [s]

Le
ve

ls
 [m

]

Tank 1

Tank 2

Tank 3
Flow disturbance

Figure 7. Tank levels using PI controller

We can notice a very good performance for the reference
signal (time interval 0-200s) but the disturbance elimination
is very slow (time interval 200-400s). Such results were
expected as the controller was optimized for the reference
step change.
 In the next study we optimized the cascade
controller with the main (PI) and auxiliary (P) controllers.
The optimization was performed on the interval 0-400s with
the presence of reference and disturbance signals. The
following parameters were calculated: for the main PI
controller- Kp1=85.6, Ki1=0.92, for the auxiliary P
controller- Kp2=1.24. The simulation results are presented
in Fig. 8.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Cascade control of the hydraulic system

Time [s]

Le
ve

ls
 [m

]

Tank 1

Tank 2

Tank 3

Figure 8. Tank levels using cascade controller

As expected the cascade control is very efficient in the
disturbances elimination. The reference response shows a
small overshoot but the flow disturbance influence to the
level in Tank 3 is so small that it can hardly be observed
from Fig. 8.

CONCLUSIONS

Traditional simulation tools (e.g. Matlab-Simulink,
ACSL,…) are not object oriented so it is very difficult or
even impossible to built fully reusable models or
components. Modelica language on the other hand enables
true object oriented support and as equations are
algebraically preprocessed during model translation, this
means also a strong modeling support as there is no need to
define a model in a state space form.
 Dealing with the design of control systems in
process industry a Modelica library for modeling and
simulation in process technology was developed. This is a
library with eleven components, very suitable for control
system design but also for modeling and simulation
education. Namely it is possible to develop quite complex
models without profound understanding and knowledge
from the area of modeling and simulation.
 Our experiments also confirm the efficiency of the
possibility that Dymola-Modelica models can be included in
Matlab-Simulink environment. All advantages of both
environments can be used: Dymola-Modelica for efficient
object oriented modeling and Matlab-Simulink for complex
experimentations. In our example optimization was used to
calculate the parameters of the controllers.

REFERENCES
[1] Cellier, F.E. 1991. Continuous System Modeling.
 Springer - Verlag, New York.
[2] Dymola, Dynamic Modeling Laboratory. 2004. Users
 Manual, Ver. 5.3, Dynasim AB, Lund, Sweden.
[3] Fritzson , P. 2004. Principles of Object Oriented
 Modeling and Simulation with Modelica 2.1.
 IEEE Press, John Wiley&Sons, Inc., Publication, USA.
[4] Modelica Association. 2003. Modelica- A Unified
 Object-Oriented Language for Physical Systems
 Modeling: Language Specification Version 2.1.
[5] Strauss, J.C. 1967. ''The SCi continuous system
 simulation language''. Simulation, no.9, 281-303.

BIOGRAPHY

B. Zupančič
Ph.D. in electrical engineering from University of Ljubljana,
Slovenia, full professor from 2000, major research interests:
modelling, simulation and control, the president of the
Slovene Society for Modelling and Simulation 1994-2002,
member of the EUROSIM Board from 1995, vice Dean at
the Faculty of Electrical Engineering 1999-2003, at present
head of the Laboratory for Modelling, Simulation and
Control, president of EUROSIM (Federation of European
Simulation Societies) author of 175 conference papers and
30 papers in scientific journals, co-author of one
international book (published by Elsevier) from the area of
modelling and simulation.

Page 6 of 6Summer Simulation Multiconference - SCSC S 2005

